Powered By Blogger

miércoles, 23 de marzo de 2011

Reporte de la película"Imparable"

Un ferrocarril sin gobierno apodado el triple siete  y cargado de material altamente tóxico e inflamable, avanza descontroladamente llevándose todo lo que se le pone por delante. Al comenzar la película nos percatamos que un individuo olvido ponerle los frenos a un tren y al ver que se había ido sin que nadie estuviera a bordo es en ese momento cuando comienza lo mas importante o el objetivo principal de la película:
Observamos que el fenómeno principal de la película fue la fricción.
Observamos ondas producidas por la luz y el sonido.
Existía fricción al momento que el tren pasaba con las vías y al frenar. Variaciones de temperatura; se elevo cuando se quemaron los frenos del descarrilador.
Fuerza cuando el tren se impacto con un carrusel de caballos y cuando choca con una parte del descarrilador.
Potencia de la velocidad del tren.
Desgaste del tren y del descarrilador al pasar por las vías, con este fenómeno también se producían vibraciones.

lunes, 7 de marzo de 2011

MOVIMIENTO ONDULATORIO



ONDAS
Una onda es una perturbación que avanza o que se propaga en un medio material o incluso en el vacío. A pesar de la naturaleza diversa de las perturbaciones que pueden originarlas, todas las ondas tienen un comportamiento semejante. El sonido es un tipo de onda que se propaga únicamente en presencia de un medio que haga de soporte de la perturbación. Los conceptos generales sobre ondas sirven para describir el sonido, pero, inversamente, los fenómenos sonoros permiten comprender mejor algunas de las características del comportamiento ondulatorio.

Movimiento ondulatorio

Proceso por el que se propaga energía de un lugar a otro sin transferencia de materia, mediante ondas mecánicas o electromagnéticas.

En cualquier punto de la trayectoria de propagación se produce un desplazamiento periódico, u oscilación, alrededor de una posición de equilibrio. Puede ser una oscilación de moléculas de aire, como en el caso del sonido que viaja por la atmósfera, de moléculas de agua (como en las olas que se forman en la superficie del mar) o de porciones de una cuerda o un resorte. En todos estos casos, las partículas oscilan en torno a su posición de equilibrio y sólo la energía avanza de forma continua. Estas ondas se denominan mecánicas porque la energía se transmite a través de un medio material, sin ningún movimiento global del propio medio. Las únicas ondas que no requieren un medio material para su propagación son las ondas electromagnéticas; en ese caso las oscilaciones corresponden a variaciones en la intensidad de campos magnéticos y eléctricos.
El movimiento ondulatorio se mide por la frecuencia, es decir, por el número de ciclos u oscilaciones que tiene por segundo. La unidad de frecuencia es el hertz (Hz), que equivale a un ciclo por segundo.

Una onda es una perturbación que avanza o que se propaga en un medio material o incluso en el vacío. A pesar de la naturaleza diversa de las perturbaciones que pueden originarlas, todas las ondas tienen un comportamiento semejante. El sonido es un tipo de onda que se propaga únicamente en presencia de un medio que haga de soporte de la perturbación.
Algunas clases de ondas precisan para propagarse de la existencia de un medio material que haga el papel de soporte de la perturbación; se denominan genéricamente ondas mecánicas. El sonido, las ondas que se forman en la superficie del agua, las ondas en cuerdas, son algunos ejemplos de ondas mecánicas y corresponden a compresiones, deformaciones y, en general, a perturbaciones del medio que se propagan a través suyo. Sin embargo, existen ondas que pueden propasarse aun en ausencia de medio material, es decir, en el vacío. Son las ondas electromagnéticas o campos electromagnéticos viajeros; a esta segunda categoría pertenecen las ondas luminosas.
Independientemente de esta diferenciación, existen ciertas características que son comunes a todas las ondas, cualquiera que sea su naturaleza, y que en conjunto definen el llamado comportamiento ondulatorio. 
El tipo de movimiento característico de las ondas se denomina movimiento ondulatorio. Su propiedad esencial es que no implica un transporte de materia de un punto a otro. Las partículas constituyentes del medio se desplazan relativamente poco respecto de su posición de equilibrio. Lo que avanza y progresa no son ellas, sino la perturbación que transmiten unas a otras. El movimiento ondulatorio supone únicamente un transporte de energía y de cantidad de movimiento.

Junto a una primera clasificación de las ondas en mecánicas y electromagnéticas, es posible distinguir diferentes tipos de ondas atendiendo a criterios distintos. En relación con su ámbito de propagación las ondas pueden clasificarse en:
* Monodimensionales: Son aquellas que, como las ondas en los muelles o en las cuerdas, se propagan a lo largo de una sola dirección del espacio.
* Bidimensionales: Se propagan en cualquiera de las direcciones de un plano de una superficie. Se denominan también ondas superficiales y a este grupo pertenecen las ondas que se producen en la superficie de un lago cuando se deja caer una piedra sobre él. Atendiendo a la periodicidad de la perturbación local que las origina, las ondas se clasifican en:
*Periódicas: Corresponden a la propagación de perturbaciones de características periódicas, como vibraciones u oscilaciones que suponen variaciones repetitivas de alguna propiedad. Así, en una cuerda unida por uno de sus extremos a un vibrador se propagará una onda periódica.
*  No periódicas: La perturbación que las origina se da aisladamente y en el caso de que se repita, las perturbaciones sucesivas tienen características diferentes. Las ondas aisladas, como en el caso de las fichas de dominó, se denominan también pulsos. Según que la dirección de propagación coincida o no con la dirección en la que se produce la perturbación, las ondas pueden ser:
* Longitudinales: El movimiento local del medio alcanzado por la perturbación se efectúa en la dirección de avance de la onda. Un muelle que se comprime da lugar a una onda longitudinal.
* Transversales: La perturbación del medio se lleva a cabo en dirección perpendicular a la de propagación. En las ondas producidas en la superficie del agua las partículas vibran de arriba a abajo y viceversa, mientras que el movimiento ondulatorio progresa en el plano perpendicular. Lo mismo sucede en el caso de una cuerda; cada punto vibra en vertical, pero la perturbación avanza según la dirección de la línea horizontal. Ambas son ondas transversales.

 
Los terremotos generan ondas de los dos tipos, que avanzan a distintas velocidades y con distintas trayectorias. Estas diferencias permiten determinar el epicentro del sismo. Las partículas atómicas y la luz pueden describirse mediante ondas de probabilidad, que en ciertos aspectos se comportan como las ondas de un estanque.

Oscilación
En física, química e ingeniería, movimiento repetido de un lado a otro en torno a una posición central, o posición de equilibrio. El recorrido que consiste en ir desde una posición extrema a la otra y volver a la primera, pasando dos veces por la posición central, se denomina ciclo. El número de ciclos por segundo, o hercios (Hz), se conoce como frecuencia de la oscilación.
Cuando se pone en movimiento un péndulo o se puntea la cuerda de una guitarra, el péndulo y la cuerda acaban deteniéndose si no actúan sobre ellos otras fuerzas. La fuerza que hace que dejen de oscilar se denomina amortiguadora. Con frecuencia, estas fuerzas son fuerzas de rozamiento, pero en un sistema oscilante pueden existir otras fuerzas amortiguadoras, por ejemplo eléctricas o magnéticas.
Frecuencia natural
Cualquier objeto oscilante tiene una 'frecuencia natural', que es la frecuencia con la que tiende a vibrar si no se le perturba. Por ejemplo, la frecuencia natural de un péndulo de 1 m de longitud es de 0,5 Hz, lo que significa que el péndulo va y vuelve una vez cada 2 segundos. Si se le da un ligero impulso al péndulo cada 2 segundos, la amplitud de la oscilación aumenta gradualmente hasta hacerse muy grande. El fenómeno por el que una fuerza relativamente pequeña aplicada de forma repetida hace que la amplitud de un sistema oscilante se haga muy grande se denomina resonancia. Muchos problemas graves de vibración en ingeniería son debidos a la resonancia. Por ejemplo, si la frecuencia natural de la carrocería de un automóvil es la misma que el ritmo del motor cuando gira a una velocidad determinada, la carrocería puede empezar a vibrar o a dar fuertes sacudidas. Esta vibración puede evitarse al montar el motor sobre un material amortiguador, por ejemplo hule o goma, para aislarlo de la carrocería.
Flameo
Un tipo peligroso de vibración es la oscilación repentina y violenta conocida como flameo. Este fenómeno se produce sobre todo en las superficies de control de los aviones, pero también ocurre en los cables eléctricos cubiertos de escarcha cuando la velocidad del viento es elevada. Uno de los casos de flameo más espectaculares provocó en 1940 el hundimiento de un puente en Tacoma, Estados Unidos. La causa fue un viento huracanado cuya velocidad potenció la vibración del puente.
En el flameo, la amplitud de vibración de una estructura puede aumentar tan rápidamente como para que ésta se desintegre casi de forma instantánea. Por eso, impedir el flameo es muy importante a la hora de diseñar puentes y aviones. En el caso de los aviones, el análisis de flameo suele complementarse con pruebas realizadas con una maqueta del avión en un túnel aerodinámico.
Sonido
fenómeno físico que estimula el sentido del oído. En los seres humanos, esto ocurre siempre que una vibración con frecuencia comprendida entre unos 15 y 20.000 hercios llega al oído interno. El hercio (Hz) es una unidad de frecuencia que corresponde a un ciclo por segundo. Estas vibraciones llegan al oído interno transmitidas a través del aire, y a veces se restringe el término `sonido' a la transmisión en este medio. Sin embargo, en la física moderna se suele extender el término a vibraciones similares en medios líquidos o sólidos. Los sonidos con frecuencias superiores a unos 20.000 Hz se denominan ultrasonidos.

ONDA MECANICA

Una onda mecánica es una perturbación de las propiedades mecánicas (posición, velocidad y energía de sus átomos o moléculas) que se propaga a lo largo de un material. Todas las ondas mecánicas requieren:
  1. Alguna fuente que cree la perturbación.
  2. Un medio que reciba la perturbación.
  3. Algún medio físico a través del cual elementos del medio puedan influir uno al otro.
El sonido es el ejemplo más conocido de onda mecánica, que en los fluidos se propaga como onda longitudinal de presión. Los terremotos, sin embargo, se modelizan como ondas elásticas que se propagan por el terreno. Por otra parte, las ondas electromagnéticas no son ondas mecánicas, pues no requieren un material para propagarse, ya que no consisten en la alteración de las propiedades mecánicas de la materia (aunque puedan alterarlas en determinadas circunstancias) y pueden propagarse por el espacio libre (sin materia).
Ondas mecánicas: las ondas mecánicas necesitan un medio elástico (sólido, líquido o gaseoso) para propagarse. Las partículas del medio oscilan alrededor de un punto fijo, por lo que no existe transporte neto de materia a través del medio. Como en el caso de una alfombra o un látigo cuyo extremo se sacude, la alfombra no se desplaza, sin embargo una onda se propaga a través de ella. Dentro de las ondas mecánicas tenemos las ondas elásticas, las ondas sonoras y las ondas de gravedad.

Ondas Transversales 

 Ondas transversales: las partículas se mueven perpendicularmente a la dirección de propagación de la onda.
Ondas en las cuales las partículas del medio en que se propagan se mueven transversalmente a la dirección de propagación de la onda. Un ejemplo de ello son las ondas circulares en el agua, ya que, se mueven describiendo todas las direcciones del plano sobre la superficie del agua, pero las partículas suben y bajan, no se trasladan segun las direcciones que dibujan sobre el eje horizontal. Al igual que las ondas electromagnéticas, no se desplazan en sentido vectorial dentro del medio según las direcciones de propagación. Dicho de otra forma, los campos eléctrico y magnético oscilan perpendicularmente a la dirección de la propagación, es decir, transversalmente.
Lo mismo sucede en el caso de una cuerda; cada punto vibra en vertical, pero la perturbación avanza según la dirección de la línea horizontal. Las variaciones en el desplazamiento de los puntos de una cuerda tensa constituyen una onda típicamente transversal. La mal llamada "ola" que se hace en los estadios de fútbol es prácticamente una onda transversal, dado que la gente no se "mueve" de sus asientos (se mueve, pero levantándose y sentándose, no cambiándose a la silla de al lado). Cuando observamos este tipo de festejo deportivo vemos que la masa que forma el público dibuja un movimiento también en sentido horizontal, como si de una serpiente se tratara; ésa es la dirección de propagación de la onda.
Cuando una cuerda tensa se pulsa o se roza la perturbación resultante se propaga a lo largo de ella. Dicha perturbación consiste en la variación de la forma de la cuerda a partir de su estado de equilibrio: los segmentos de la cuerda se mueven en una dirección perpendicular a la cuerda y por tanto perpendicularmente a la dirección de propagación de la perturbación. Una onda en la que la perturbación es perpendicular a la dirección de propagación se denomina onda transversal.

ONDA LONGITUDINAL

Una onda longitudinal es una onda en la que el movimiento de oscilación de las partículas del medio es paralelo a la dirección de propagación de la onda. Las ondas longitudinales reciben también el nombre de ondas de presión u ondas de compresión. Algunos ejemplos de ondas longitudinales son el sonido y las ondas sísmicas de tipo P generadas en un terremoto.











































lunes, 21 de febrero de 2011

GASES


Se denomina gas al estado de agregación de la materia que no tiene forma ni volumen propio. Su principal composición son moléculas no unidas, expandidas y con poca fuerza de atracción, haciendo que no tengan volumen y forma definida, provocando que este se expanda para ocupar todo el volumen del recipiente que la contiene, con respecto a los gases, las fuerzas gravitatorias y de atracción entre partículas, resultan insignificantes.
Existen diversas leyes que relacionan la presión, el volumen y la temperatura de un gas.
Finalmente un gas es entonces. 

Una sustancia que cumple con las condiciones siguientes:
Ocupa el volumen del recipiente que lo contiene
Está formado por un gran número de moléculas
Estas moléculas se mueven individualmente al azar en todas direcciones
La interacción entre las moléculas se reduce solo a su choque.


LEY DE AVOGADRO
Es aquella en el que las variables son presión y temperatura, siendo el Volumen directamente proporcional al Número de moles (n).


LEY DE CHARLES
A una presión dada, el volumen ocupado por un gas es directamente proporcional a su temperatura.


LEY DE GAY-LUSSAC
La presión del gas, que se mantiene a volumen constante, es directamente proporcional a la temperatura:

Es por esto que para poder envasar gas, como gas licuado, primero se ha de enfriar el volumen de gas deseado, hasta una temperatura característica de cada gas, a fin de poder someterlo a la presión requerida para licuarlo sin que se sobrecaliente, y, eventualmente, explote.
Para entender mejor el comportamiento de un gas, siempre se realizan estudios con respecto al gas ideal, aunque este en realidad nunca existe y las propiedades de este son:
§  Un gas está constituido por moléculas de igual tamaño y masa, pero una mezcla de gases diferentes.
§  Se le supone con un número pequeño de moléculas; así su densidad es baja y su atracción molecular es nula.
§  El volumen que ocupa el gas es mínimo, en comparación con el volumen total del recipiente.
§  Las moléculas de un gas contenidas en un recipiente, se encuentran en constante movimiento, por lo que chocan, ya entre sí o contra las paredes del recipiente que las contiene.
Para explicar el comportamiento de los gases, las nuevas teorías utilizan tanto la estadística como la teoría cuántica, además de experimentar con gases de diferentes propiedades o propiedades límite, como el UF que es el gas más pesado conocido.
Un gas no tiene forma ni volumen fijo; se caracteriza por la casi nula cohesión y la gran energía cinética de sus moléculas.


 Proceso termodinámico
En física, se denomina proceso termodinámico a la evolución de determinadas magnitudes (opropiedades)propiamente termodinámicas relativas a un determinado sistema físico.
Desde el punto de vista de la termodinámica, estas transformaciones deben transcurrir desde un estado de equilibrio inicial a otro final; es decir, que las magnitudes que sufren una variación al pasar de un estado a otro deben estar perfectamente definidas en dichos estados inicial y final. De esta forma los procesos termodinámicos pueden ser interpretados como el resultado de la interacción de un sistema con otro tras ser eliminada alguna ligadura entre ellos, de forma que finalmente los sistemas se encuentren en equilibrio (mecánico, térmico y/o material) entre sí.
De una manera menos abstracta, un proceso termodinámico puede ser visto como los cambios de un sistema, desde unas condiciones iniciales hasta otras condiciones finales, debidos a la desestabilización del sistema.
el primer principio de la Termodinámica dice que cuando a un sistema le comunicas calor (o el sistema cede calor), éste se transforma en aumentar su energía interna y en producir un trabajo exterior.
La expresión matemática sería : q = U + pdV, siendo q cantidad de calor, U la energia interna y pdv el trabajo producido o absorbido, (p = presión exterior, y dV el incremento de volumen del sistema que se ha producido en contra de la presión: pdV=trabajo.
 Un ejemplo muy sencillo: que se tiene un volumen de agua a 10ºC y se calienta hasta 100ºC. ¿Qué ha ocurrido? en primer lugar se ha aumentando la energía interna del agua, en forma de las calorias que el agua ha adquirido al pasar de 10ºC hasta 100ºC, es decir su energía calórica ha aumentado en forma de calorias latentes que ahora tiene el agua a 100ºC, que se puede expresar en este caso como U= CpdT, es decir el calor especifico del agua a presión constante por el incremento de temperatura. Que más ocurrió ?  el agua se ha transformado en vapor que se ha expandido contra la presión atmosférica un volumen V y por lo tanto se ha producido un trabajo.

PROCESO ISOTÉRMICO
Proceso isotérmico es el cambio de temperatura reversible en un sistema termodinámico, siendo dicho cambio de temperatura constante en todo el sistema. La compresión o expansión de un gas ideal en contacto permanente con un termostato es un ejemplo de proceso isotermo, y puede llevarse a cabo colocando el gas en contacto térmico con otro sistema de capacidad calorífica muy grande y a la misma temperatura que el gas; este otro sistema se conoce como foco caliente. De esta manera, el calor se transfiere muy lentamente, permitiendo que el gas se expanda realizando trabajo. Como la energía interna de un gas ideal sólo depende de la temperatura y ésta permanece constante en la expansión isoterma, el calor tomado del foco es igual al trabajo realizado por el gas: Q = W. Una curva isoterma es una línea que sobre un diagrama representa los valores sucesivos de las diversas variables de un sistema en un proceso isotermo. Las isotermas de un gas ideal en un diagrama P-V, llamado diagrama de Clapeyron, son hipérbolas equiláteras, cuya ecuación es P•V = constante.
Proceso isotérmico: Comprime el gas lentamente, controlando que en todos los casos la temperatura permanezca lo más constante posible. · Grafique los valores de P versus V y (P.V) versus V. · Compare sus resultados con los que predice la ley de Boyle.
PROCESO ISOTÉRMICO: En este proceso la temperatura permanece constante. Como la energía interna de una gas ideal sólo es función de la temperatura, en un proceso isotérmico de un gas ideal la variación de la energía interna es cero (∆U= 0) La curva hiperbólica se conoce como isotérmica. TRABAJO ISOTÉRMICO: El problema pide que se determine el trabajo de un proceso cuasiestático isotermo en el que se dobla la presión
Para un gas ideal en un proceso isotérmico se cumple que: ∆U(T) = ∆H(T)=0 el calor y el trabajo (que son iguales) se pueden calcular: Q = W = n·R·T·Ln (V
/V) = PV·Ln (P/P)

Un proceso isotérmico es aquel que se produce a temperatura constante. Por ejemplo la fusión del hielo es un proceso isotermo porque se produce a una temperatura constante de 0ºC.
PROCESO ISOBÁRICO
Es un proceso a presión constante; en consecuencia: se tendrá
Si la presión no cambia durante un proceso, se dice que éste es isobárico. Un ejemplo de un proceso isobárico es la ebullición del agua en un recipiente abierto. Como el contenedor está abierto, el proceso se efectúa a presión atmosférica constante. En el punto de ebullición, la temperatura del agua no aumenta con la adición de calor, en lugar de esto, hay un cambio de fase de agua a vapor.


DIAGRAMA DE PROCESO ISOBARICO

Grafica Volumen vs Presión, en el proceso isobárico la presión es constante. El trabajo (W) es la integral de la presión respecto al volumen.
Proceso isobárico : Es el que se produce a presión constante. Por ejemplo el proceso de calentamiento del agua del ejemplo anterior es un proceso a presión constante, la presión atmosférica en ese caso.


 PROCESO ISOCORICO


Un proceso isocórico, también llamado proceso isométrico o isovolumétrico es un proceso termodinámico en el cual el volumen permanece constante; ΔV = 0. Esto implica que el proceso no realiza trabajo presión-volumen, ya que éste se define como:
ΔW = PΔV,
donde P es la presión (el trabajo es positivo, ya que es ejercido por el sistema).
Aplicando la
primera ley de la termodinámica, podemos deducir que Q, el cambio de la energía interna del sistema es:
Q = ΔU
para un proceso isocórico: es decir, todo el calor que transfiramos al sistema quedará a su energía interna, U. Si la cantidad de gas permanece constante, entonces el incremento de energía será proporcional al incremento de temperatura, Q = nCVΔT donde CV es el calor específico molar a volumen constante.
En un diagrama P-V, un proceso isocórico aparece como una línea vertical. Desde el punto de vista de la termodinámica, estas transformaciones deben transcurrir desde un estado de equilibrio inicial a otro final; es decir, que las magnitudes que sufren una variación al pasar de un estado a otro deben estar perfectamente definidas en dichos estados inicial y final. De esta forma los procesos termodinámicos pueden ser interpretados como el resultado de la interacción de un sistema con otro tras ser eliminada alguna ligadura entre ellos, de forma que finalmente los sistemas se encuentren en equilibrio (mecánico, térmico y/o material) entre si.
De una manera menos abstracta, un proceso termodinámico puede ser visto como los cambios de un sistema, desde unas condiciones iniciales hasta otras condiciones finales, debidos a la desestabilización del sistema.






PROCESO ADIABATICO

Durante un proceso adiabático para un gas perfecto, la transferencia de calor hacia el sistema o proveniente de él es cero. El cambio de presión con respecto al volumen obedece la ley
Es cuando un sistema no gana ni pierde calor, es decir, Q = 0. Este proceso puede realizarse rodeando el sistema de material aislante o efectuándolo muy rápidamente, para que no haya intercambio de calor con el exterior.


El trabajo realizado sobre el sistema (-W es positivo) se convierte en energía interna, o, inversamente, si el sistema realiza trabajo (-W es negativo), la energía interna disminuye.
En general, un aumento de energía interna se acompaña de uno de temperatura, y una disminución de energía interna se asocia de una de temperatura.
Proceso adiabático, en termodinámica, cualquier proceso físico en el que magnitudes como la presión o el volumen se modifican sin una transferencia significativa de energía calorífica hacia el entorno o desde éste.
Proceso adiabático : Es un proceso en el que el sistema no toma ni cede calor en ninguna etapa. La ecuación del 1er. principio aquí q==, con lo que se produce que al ser q=0, dU = PdV. Por ejemplo si comprimes un gas desde 10 litros hasta 1 litro, y el recipiente que lo contiene esta perfetamente aislado, produces una compresión adiabática, y entonces la temperatura del aire sube dentro del recipiente. Este proceso se utiliza en los motores diesel en los que se comprime el aire fuertemente hasta una temperatura tal que hace arder el gas-oil inyectado en el punto máximo de la compresión.
Un ejemplo corriente es la emisión de aerosol por un pulverizador, acompañada de una disminución de la temperatura del pulverizador. La expansión de los gases consume energía, que procede del calor del líquido del pulverizador. El proceso tiene lugar demasiado rápido como para que el calor perdido sea reemplazado desde el entorno, por lo que la temperatura desciende. El efecto inverso, un aumento de temperatura, se observa cuando un gas se comprime rápidamente.
Muchos sistemas comunes, como los motores de automóvil, presentan fenómenos adiabáticos.

PROCESO DIATERMICO

Se dice que un límite es diatérmico cuando permite que el estado del sistema se modifique sin que haya movimiento del límite. Diatermico tambien puede entenderse por isotermico , significa que no hay cambio de temperatura debido a una pared diatermica que aisla el sistema del medio ambiente, tene bien en cuenta las definiciones de sistema , medio ambiente y universo. La manera usual de definirlo es que un límite es diatérmico cuando permite el flujo de calor a través de él. De nuevo, preferimos evitar esta segunda definición debido a la dificultad de definir calor. Las definiciones y conceptos precedentes son fundamentales para nuestra formulación de la termodinámica.











jueves, 17 de febrero de 2011

El verdadero amor

Erase una vez en un reino muy lejano una hermosa princesa llamada Odette, que estaba perdidamente enamorada de el príncipe Dereck.
Un día el príncipe Dereck decidió pedirle matrimonio, pero la princesa pensaba que como podias casarte con un hombre sin saber realmente si era el amor de tu vida; el le demostraba de muchas formas su sentimiento pero ella incrédula  aunque lo amaba tenía el temor de que le fallara su amado, así que le pidió una noche para pensarlo; en ese lapso el príncipe tuvo una aparición de un ángel que le ordenó que si su amor era puro y sincero  diera muestra de su amor dejándola, si no sufriría  mucho su amada Odette.
Con el corazón destrozado el príncipe al amanecer se presentó en el castillo diciéndole que ya no la amaba, que había sido un error haberle pedido matrimonio.Odette desilusionada, haciendo veraz su creencia sobre los hombres juró jamás volverse a enamorar.
Pasó el tiempo y Odette conoció a un apuesto príncipe que la fue enamorando sigilosamente, hasta que un día de invierno le propuso matrimonio, ella sorprendida le pidió  una noche para pensarlo, su cabeza daba vueltas, los recuerdos la atormentaban; de pronto el mismo ángel que le pidió a Dereck que la dejara se le apareció explicándole porque Dereck había actuado de esa manera, ella no lo podía creer, desperdició gran parte de su vida esperando al hombre indicado que lamentablemente por su indecisión dejó ir, cosa que ahora comprende.
El ángel le dijo que buscara a Dereck  que un amor puro y sincero pese a los años y la distancia vivirá por siempre.